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Summary 

The classical one-dimensional inverse problem consists of esti- 
mating reflection coefficients from surface seismic data using the 
one-dimensional wave equation. Several authors have found sta- 
ble solutions to this problem using least squares model fitting 
methods. However, the one-dimensional wave equation can only 
describe plane waves. Data generated by a point source can 
not be modelled by plane waves since the geometrical spreading 
is different for primary reflections and multiple reflections. We 
solve this difficulty by using a least-squares model fitting scheme 
based on a ray series expansion describing vertically travelling 
waves originating from a point source. The amplitudes of post- 
stack data are in some cases incorrect, so that pre-stack data 
must be used in an inversion scheme. Near-trace data from con- 

ventional seismic surveys are not zero-offset and can not be used 
with a method assuming zero-offset geometry. We use pre-stack 
data obtained from a purpose designed true zero-offset seismic 
experiment as input to estimate reflection coefficients. Stack- 

ing velocities from a conventional seismic survey were used to 
estimate the geometrical spreading. The resulting reflection co- 
efficients are shown to correlate reasonably well with a well log. 

Introduction 

The one-dimensional inverse problem has been treated by many 
authors. Reviews of these works are found in Burridge (1980) 
and Bube and Burridge (1983). Bamberger et al. (1982) gave a 
stable method based on least squares model fitting. This work 
also contained inversion results using real pre-stack surface seis- 

mic data. The one-dimensional wave equation describes plane 
waves propagating along one axis. Spherical waves originating 
from a point source can not be adequately described. In order to 
use methods based on the one-dimensional wave equation, some 
kind of scaling of the input data must be performed. As shown by 
Ursin and Berteussen (198G) and Ursin and Arntsen (1985), this 
leads to incorrect amplitudes of the multiple reflections. In some 
cases incorrect estimates of the reflection coefficients could be ob- 
tained. We avoid this difficulty by modelling zero-offset seismic 
data as vertically travelling spherical waves in a one-dimensional 
horizontally layered medium, taking geometrical spreading prop- 
erly into account. A conventional marine seismic experiment is 
not a true zero-offset experiment so that a special zero-offset ma- 
rine seismic experiment was performed in an area which is known 

to be approximately horizontally stratified. 
The seismic inverse problem is solved by a least-squares model 

fitting scheme. The forward modelling is based on ray-theory and 
is able to simulate a true zero-offset experiment in a horizontally 
layered medium. The effects of three-dimensional geometrical 
spreading are included, as well as multiple reflections. 

Modelling 

A medium consisting of a stack of L elastic plane layers is con- 
sidered. The stack is bounded by a free surface at the top and a 

half-space at the bottom, which arenumbered 0 and L+l, respec- 
tively. Layer k is above interface 6. Each layer is characterized 

by the thickness Dk, P-wave velocity ck and density Pk. A co- 
ordinate system is defined, with the positive z-axis downwards. 

The coordinate at the bottom of layer k is Zk, with .zo = 0. The 
receiver and source are located in the first layer.It is assumed that 
the pressure at the source position is given. As shown by Ursin 
and Arntsen (1985), the elastic wave-equation can be approxi- 

mately solved by a ray-series expansion. The solution is valid for 
waves with the direction of propagation along the z-axis. The 
arclength along any ray is denoted by s, with s = 0 at the source 
position 2,. 

The pressure p at the receiver due to a single ray can be 
expressed in the following form: 

P(s,~) = AF(sMl- T(S)). (1) 

A is a factor containing products of reflection and transmission 
coefficients, while F accounts for the geometrical spreading. 7 
is the traveltime. The source function g is a sum of the source 
pulse and the source and receiver ghost reflections from the free 
surface. 

The function F(s) accounts for geometrical spreading and is 
written 

where 

F(s) = cl/n(s), (2) 

n(s) = c hk&Q. (3) 
k 

The sum runs over all the layers traversed by the ray. The con- 
tribution h&nk to the geometrical spreading from one layer is 

‘* hkAnk = hn_ 
/ 

c(a)do = hkCk& = h&Tk. (4) 
a-1 

Ark is the one-way traveltime oflayer k. The total pressure at the 
receiver position consist of a sum of infinitely many rays. In any 
practical calculation a finite set of rays must be selected. A rea- 
sonable selection criterion is the number of times a given ray has 
been reflected (Arntsen 1988). The most important contribution 
to the total field will in many cases consist of primary reflections 
together with surface related multiples. The total pressure at 
the receiver position can then be written as the sum of primary 
reflections and surface multiples: 

P(l) = Pl tP2. 

The contribution from the primary reflections is 

(5) 

L 

PI(~) = c AkC,~$S(~ - Tk). (6) 
k=l 
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2 Zero-oftset inversion 

ctn;’ is the geometrical spreading for the primary reflection from 
interface k, and rr. is the corresponding traveltime. Note that 

nk = rkviMs,k where VRMs,k is the RMS-velocity. The amph- 
tude & is the product of reflection and transmission coefficients 
for the primary reflection from interface k. For surface multiples, 
the contribution to the total pressure is given by: 

pz(t) = 5 6 KAIA,,,wI(~I t n,)-‘dt -n - hm). (7) 
1~1 m=l 

to is the reflection coefficient of the free surface. It’ is a factor 
equal to 2 when 1 # m and 1 when I = m. It is a simple ray 
count factor taking into account that two multiples with different 

raypath could have the same amplitude and traveltime (Arntsen 
1988). 

Inversion of zero-offset field data 

The pressure can in general be regarded as a (nonlinear) function 
of the parameters characterizing the layered medium. By writing 

the pressure p as a vector-function of a parameter vector 8 this 
is simply expressed: 

p=P(@) (81 

The pressure vector is defined by the measured samples pk at 
time 2 = (k - l)At 

P = (Pl,h...,PN,), (9) 

where NT is the number of samples in the pressure vector. The 
parameter vector is in our case defined as: 

@ = (71, . ..r%)r (IO) 

where rk is the reflection coefficient of layer k. All the layers have 
thickness equal to the sampling interval of the data measured 

in two-way traveltime. Equation (8) is solved with an iterative 
procedure where the time integrated squared difference between 

the measured pressure and the pressure from the forward model 
is minimized with respect to the reflection coefficients. 

A zero-offset experiment was conducted to obtain proper field 
data. The source was a single airgun with a chamber volume of 
9.5 liters, while the receiver was a short section (15 m long) of 
a conventional streamer. With this setup a line was shot in the 

North-Sea over an area which is known to be approximately hor- 
izontally stratified. A borehole was located very close to the line, 
and the sonic and density logs from this borehole were available. 
The data from a single hydrophone on the streamer section were 
bandpass-filtered with an upper cut off frequency at 62 Hz and 
resampled to a sampling interval of 8 ms. The resulting data is 

shown in Figure 1. A scale factor proportional with time was 
applied to the data before plotting. The shot interval was 50 
m. The source wavelet was estimated from the direct arrival 

measured on the streamer section. 

First run 

In the first run, only one trace at the bore-hole position was in- 
verted. No scaling of the data before inversion was applied. The 
initial model was taken to be reflection coefficients equal to zero 
for all times. A conventional seismic survey had been performed 
along a line intersecting the bore-hole. It was then possible to 
use RMS velocities from a conventional velocity analysis to com- 
pute the geometrical spreading factor. The inverted reIlection 

coefficients are shown in Figure 2. The norm of the error trace is 
about 0.05 times the norm of the data trace, and is also shown 
in Figure 2. The resulting reflection coefficients were obtained 
after five iterations. The last two iterations reduced the norm of 
the error trace only marginally. 

Sonic and density logs were available, and these were re- 
sampled and then used to compute the reflection coefficients as 
function of two-way traveltime. After filtering with a zero-phase 
bandpass filter, the resulting reflection series was plotted in Fig- 
ure 2. Comparing the reflection coefficients from the log with the 
estimated reflection coefficients, the major events correlate well. 

Second run 

In the second run, eighty traces were inverted. The resulting 
section of reflection coefficients is shown in Figure 4. The re- 
flection coefficieuts were only scaled by a constant factor before 
plotting. The error traces are shown in Figure 3. Comparing the 
estimated reflection coefficients with the input data, several fea- 
tures can be noted. The long tail of the source signature has been 
reduced, and the waterbottom multiple at 0.8s has been atten- 
uated. The effects of geometrical spreading have of course been 

removed. The lateral correlation of the reflection coefficients are 
particulary strong below 1.4 seconds of two-way traveltime. 

Discussion and conclusions 

We have given an inverse method for computing reflection co- 
efficients from zero offset field data. Geometrical spreading is 
properly taken into account by using RMS velocities from a con- 
ventional seismic survey. This eliminates the need for any scaling 
of the input data. 

A zero offset experiment has been conducted, and the inverse 
method was used to estimate reflection coefficients from a short 
marine seismic line. The estimates seem to correlate well with 
reflection coefficients obtained from well logs. It is however clear 
that a straightforward comparison is not without problems. After 
all, well log measurements are performed with sampling intervals 
of the order of 10 cm, which is much less than seismic wave- 
lengths. Since the seismic waves “see” another medium than 

the well log measurments, one should expect some differences 
between the estimated reflection coefficients and the reflection 

coefficients obtained from the well log. 
Difference between the estimates and the log not accounted 

for by differences of scale may in general be explained by inac- 

curacies in the forward model. In the present example we do 
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Zero-offset inversion 3 

not take into account absorption effects, which will lead to esti- 
mates of the reflection coefficients smaller than their actual value. 
Deviations from horizontal layering would lead to unpredictable 

errors in the estimates of the reflection coefficients. Errors of 
this kind should be expected to be present in the estimates of 
the reflection coefficients in the left part of Figure 4, since de- 
viations from a horizontally stratified medium are evident. The 
ray series solution used in the forward model is valid only under 
certain conditions (Ben-Me&em and Beydoun 1985) which are 
not necessarily fulfilled in the examples we have shown. 

T t? 
E i= 
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Distance (km) 

Figure 1: Zero-offset field data 

Ma Residual Log Estimate 

Figure 2: Inverted reflection coefficients, log, data and residuals 
at the bore-hole position. All traces are platted five consequtive 

times. 
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